A polymer acceptor with an optimal LUMO energy level for all-polymer solar cells
نویسندگان
چکیده
A key parameter for polymer electron acceptors is the lowest unoccupied molecular orbital (LUMO) energy level (ELUMO). For state-of-the-art polymer electron acceptors based on the naphthalene diimide (NDI) unit, their ELUMO are low-lying and cannot be tuned, leading to a low open-circuit voltage (Voc) of the resulting all-polymer solar cells (all-PSCs). We report that polymer electron acceptors based on the double B)N bridged bipyridine (BNBP) unit exhibit tunable ELUMO because of their delocalized LUMOs over polymer backbones. The ELUMO of the copolymer of the BNBP unit and selenophene unit (P-BNBP-Se) is lower by 0.16 eV than that of the copolymer of the BNBP unit and thiophene unit (P-BNBP-T). As a result, the energy levels of P-BNBP-Se match well with the widely-used polymer donor, poly[(ethylhexylthiophenyl)-benzodithiophene-(ethylhexyl)-thienothiophene] (PTB7-Th). The electron mobility of PBNBP-Se (me 1⁄4 2.07 10 4 cm V 1 s ) is also higher than that of P-BNBP-T (me 1⁄4 7.16 10 5 cm V 1 s ). While the all-PSC device based on the PTB7-Th:P-BNBP-T blend shows a moderate power conversion efficiency (PCE) of 2.27%, the corresponding device with P-BNBP-Se as the acceptor exhibits a PCE as high as 4.26%. Moreover, owing to the suitable ELUMO of P-BNBP-Se, the all-PSC device of PBNBP-Se shows a Voc up to 1.03 V, which is higher by 0.22 V than that with the conventional NDI-based polymer acceptor. These results indicate that BNBP-based polymers can give all-PSCs with high PCEs, remarkably high Voc values and small photon energy losses.
منابع مشابه
Investigation of Organic Compounds as Photosensitizer for Dye Sensitized Solar Cells
Two organic compounds (SC-23=(E)-2-Cyano-3-(2,3-dimethoxyphenyl) acrylic acid and SC-25=(E)-2-Cyano-3-(2,5-dimethoxyphenyl) acrylic acid) involving methoxy groups as the electron donor and cyanoacrylic acid group as the electron acceptor have been investigated for dye sensitized solar cells. They shows a short-circuit current density (Jsc) of 2.08 and 1.81 mA cm-2, an open circuit voltage (Voc)...
متن کاملA highly efficient fullerene acceptor for polymer solar cells.
C70-based acceptors show great potential in polymer solar cells (PSCs). Two high-LUMO C70 acceptors, the 66π OQMF70 and the 64π bis-OQMF70, based on methano[70]fullerene (C70CH2) were developed. An outstanding power conversion efficiency (PCE) of 6.88% was obtained from OQMF70:P3HT solar cells.
متن کاملبهبود چگالی جریان و افزایش کارایی سلول خورشیدی پلیمری P3HT:PCBM با استفاده از نانومیله اکسید روی
Hybrid solar cells combine organic and inorganic materials with the aim of utilizing the low cost cell production of organic photovoltaics (OPV) as well as obtaining other advantages, such as tuneable absorption spectra, from the inorganic component. Whilst hybrid solar cells have the potential to achieve high power conversion efficiencies (PCE), currently obtained efficiencies are quite low. T...
متن کاملLinked‐Acceptor Type Conjugated Polymer for High Performance Organic Photovoltaics with an Open‐Circuit Voltage Exceeding 1 V
A linked-acceptor type conjugated polymer is designed and sythesized based on 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (BDTT) and linked-thieno[3,4-c]pyrrole-4,6-dione (LTPD). This polymer uses alkyl-substituted thiophene as a bridge. The PBDTT-LTPD includes two TPD units in one repeating unit, which can enhance acceptor density in the polymer backbone and lower the ...
متن کاملIntroduction to polymer solar cells
New photovoltaic (PV) energy technologies can contribute to environmentally friendly, renewable energy production, and the reduction of the carbon dioxide emission associated with fossil fuels and biomass. One new PV technology, plastic solar cell technology, is based on conjugated polymers and molecules. Polymer solar cells have attracted considerable attention in the past few years owing to t...
متن کامل